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OVERVIEW

▪ What is inheritance?

▪ A trait or legacy received from a parent or ancestor

▪ Example: money from great uncle

▪ Example: brown eyes from mother

▪ In Java inheritance is a way to build new classes 

▪ We can derive a new class by extending an existing class

▪ The new class will inherit all of the fields and methods of 

the existing class (without having to copy/paste)

▪ The derived class is called the subclass (or child)

▪ The existing class is called the superclass (or parent)
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OVERVIEW

▪ Inheritance can be visualized like a family tree

▪ Multiple child classes can be derived from same parent

▪ We can have multiple generations of inheritance

▪ We are not allowed to inherit from multiple parents
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OVERVIEW

▪ Why is inheritance important?

▪ It saves development time and reduces code duplication  

by basing new classes on existing classes

▪ This increase reliability by extending debugged classes

▪ We can also use polymorphism to process groups of 

related objects more efficiently in some applications

▪ Lesson Overview

▪ Syntax for inheritance

▪ Examples of inheritance

▪ Summary
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SYNTAX

▪ We use the keyword extends in the subclass (child) 

definition to name the superclass (parent) 

▪ public class Employee extends Person

▪ public class Car extends Vehicle

▪ public class Truck extends Vehicle

▪ public class Hybrid extends Car

▪ In Java multiple children are allowed to inherit from one 

parent, but a child is not allowed to have multiple parents

▪ Multiple inheritance is allowed in some other languages 

but the syntax and implementation get very ugly
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SYNTAX

▪ The keyword super is used in two ways when 

implementing a subclass to access the superclass

▪ We can call the constructor methods of the superclass 

using super() or super(params)

▪ We can call public methods in the superclass using 

super.method_name(params)

▪ We can not access private data fields of the superclass 

directly, so we need to call superclass getters and setters

▪ We can not access private methods of the superclass
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SYNTAX

▪ By default a subclass can not directly access private data 

fields of the superclass

▪ We can change this if we have access to the implementation 

of the superclass

▪ Use the keyword protected instead of private when defining 

the data fields of the superclass

▪ private String firstName;

▪ private String lastName;

▪ protected String homeAddress;

▪ protected double GPA;
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EXAMPLES

▪ Assume we already have a Person class and we want to 

create an Employee class

▪ The two objects have many fields in common
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Person:

First name

Last name

Birth date

Employee:

First name

Last name

Birth date

Hire date

Employee number

Annual salary



EXAMPLES

Definition of Person class:

public class Person

{

    private String firstName;

    private String lastName;

    private String birthDate;

    public Person() { ... }

    public getFirstName() { ... }

    public getLastName() { ... }

    ...

    public print() { ... }

}
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EXAMPLES

Definition of Employee class:

public class Employee

{

    private String firstName;

    private String lastName;

    private String birthDate;

    private String hireDate;

    private int employeeNumber;

    private double annualSalary;

    public Employee() { ... }

    public getFirstName() { ... }

    public getLastName() { ... }

    ...

    public setEmployeeNumber(int n) { ... }

    public setEmployeeNumber(int n) { ... }

    public print() { ... }

}
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EXAMPLES

Definition of Employee class:

public class Employee

{

    private String firstName;

    private String lastName;

    private String birthDate;

    private String hireDate;

    private int employeeNumber;

    private double annualSalary;

    public Employee() { ... }

    public getFirstName() { ... }

    public getLastName() { ... }

    ...

    public setEmployeeNumber(int n) { ... }

    public setEmployeeNumber(int n) { ... }

    public print() { ... }

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 13

Add new fields 

and methods to the 

Employee class



EXAMPLES

Definition of Employee class:

public class Employee

{

    private String firstName;

    private String lastName;

    private String birthDate;

    private String hireDate;

    private int employeeNumber;

    private double annualSalary;

    public Employee() { ... }

    public getFirstName() { ... }

    public getLastName() { ... }

    ...

  public setEmployeeNumber(int n) { ... }

    public setEmployeeNumber(int n) { ... }

    public print() { ... }

}
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Edit implementation 

of some Person 

methods as needed



EXAMPLES

▪ Potential problems:

▪ Employee class has duplicate code from Person

▪ Code is longer and more difficult to maintain

▪ Any changes to Person methods have to be done to 

Employee class too (double effort)

▪ Solution using inheritance:

▪ Extend the Person class to create Employee class

▪ Reuse the private variables without redefining them

▪ Reuse (or override) public methods of Person
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EXAMPLES

Extend Person to define Employee class:

public class Employee extends Person

{

    private String hireDate;

    private int employeeNumber;

    private double annualSalary;

    public Employee() { ... }

    public setEmployeeNumber(int n) { ... }

    public setEmployeeNumber(int n) { ... }

    public print() { ... }

}
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We create Employee 

class by extending the 

Person class



EXAMPLES

Extend Person to define Employee class:

public class Employee extends Person

{

    private String hireDate;

    private int employeeNumber;

    private double annualSalary;

    public Employee() { ... }

    public setEmployeeNumber(int n) { ... }

    public setEmployeeNumber(int n) { ... }

    public print() { ... }

}
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We only need to 

include the new fields 

and methods



EXAMPLES

Extend Person to define Employee class:

public class Employee extends Person

{

    private String hireDate;

    private int employeeNumber;

    private double annualSalary;

    public Employee() { ... }

    public setEmployeeNumber(int n) { ... }

    public setEmployeeNumber(int n) { ... }

   public print() { ... }

}
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We can create 

Employee methods 

that override the 

Person methods 



CODE DEMO

Person.java

Employee1.java

Employee2.java
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CODE DEMO

Time2.java

MilliTime1.java

MilliTime2.java
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SUMMARY

▪ Inheritance is an important OOP feature because it saves 

development time and increases software robustness

▪ We use the keywords “extends” “super” and “protected” 

when implementing inheritance in Java

▪ We add data fields and methods in the subclass to make it 

more specific than the general purpose superclass 

▪ We can override methods in the superclass with more 

methods with the same signature in the subclass

▪ The Java class libraries use inheritance extensively (there 

are dozens of classes derived from Exception)
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