
ADVANCED OOP:

INHERITANCE

OVERVIEW

OVERVIEW

▪ What is inheritance?

▪ A trait or legacy received from a parent or ancestor

▪ Example: money from great uncle

▪ Example: brown eyes from mother

▪ In Java inheritance is a way to build new classes

▪ We can derive a new class by extending an existing class

▪ The new class will inherit all of the fields and methods of

the existing class (without having to copy/paste)

▪ The derived class is called the subclass (or child)

▪ The existing class is called the superclass (or parent)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 2

OVERVIEW

▪ Inheritance can be visualized like a family tree

▪ Multiple child classes can be derived from same parent

▪ We can have multiple generations of inheritance

▪ We are not allowed to inherit from multiple parents

(c) Prof. John Gauch, Univ. of Arkansas, 2020 3

Student

Graduate Undergraduate

Athlete HonorsMS PhD

OVERVIEW

▪ Why is inheritance important?

▪ It saves development time and reduces code duplication

by basing new classes on existing classes

▪ This increase reliability by extending debugged classes

▪ We can also use polymorphism to process groups of

related objects more efficiently in some applications

▪ Lesson Overview

▪ Syntax for inheritance

▪ Examples of inheritance

▪ Summary

(c) Prof. John Gauch, Univ. of Arkansas, 2020 4

ADVANCED OOP:

INHERITANCE

PART 1

SYNTAX

SYNTAX

▪ We use the keyword extends in the subclass (child)

definition to name the superclass (parent)

▪ public class Employee extends Person

▪ public class Car extends Vehicle

▪ public class Truck extends Vehicle

▪ public class Hybrid extends Car

▪ In Java multiple children are allowed to inherit from one

parent, but a child is not allowed to have multiple parents

▪ Multiple inheritance is allowed in some other languages

but the syntax and implementation get very ugly

(c) Prof. John Gauch, Univ. of Arkansas, 2020 6

SYNTAX

▪ The keyword super is used in two ways when

implementing a subclass to access the superclass

▪ We can call the constructor methods of the superclass

using super() or super(params)

▪ We can call public methods in the superclass using

super.method_name(params)

▪ We can not access private data fields of the superclass

directly, so we need to call superclass getters and setters

▪ We can not access private methods of the superclass

(c) Prof. John Gauch, Univ. of Arkansas, 2020 7

SYNTAX

▪ By default a subclass can not directly access private data

fields of the superclass

▪ We can change this if we have access to the implementation

of the superclass

▪ Use the keyword protected instead of private when defining

the data fields of the superclass

▪ private String firstName;

▪ private String lastName;

▪ protected String homeAddress;

▪ protected double GPA;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 8

ADVANCED OOP:

INHERITANCE

PART 2

EXAMPLES

EXAMPLES

▪ Assume we already have a Person class and we want to

create an Employee class

▪ The two objects have many fields in common

(c) Prof. John Gauch, Univ. of Arkansas, 2020 10

Person:

First name

Last name

Birth date

Employee:

First name

Last name

Birth date

Hire date

Employee number

Annual salary

EXAMPLES

Definition of Person class:

public class Person

{

 private String firstName;

 private String lastName;

 private String birthDate;

 public Person() { ... }

 public getFirstName() { ... }

 public getLastName() { ... }

 ...

 public print() { ... }

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 11

EXAMPLES

Definition of Employee class:

public class Employee

{

 private String firstName;

 private String lastName;

 private String birthDate;

 private String hireDate;

 private int employeeNumber;

 private double annualSalary;

 public Employee() { ... }

 public getFirstName() { ... }

 public getLastName() { ... }

 ...

 public setEmployeeNumber(int n) { ... }

 public setEmployeeNumber(int n) { ... }

 public print() { ... }

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 12

Copy/paste from

 the Person class

EXAMPLES

Definition of Employee class:

public class Employee

{

 private String firstName;

 private String lastName;

 private String birthDate;

 private String hireDate;

 private int employeeNumber;

 private double annualSalary;

 public Employee() { ... }

 public getFirstName() { ... }

 public getLastName() { ... }

 ...

 public setEmployeeNumber(int n) { ... }

 public setEmployeeNumber(int n) { ... }

 public print() { ... }

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 13

Add new fields

and methods to the

Employee class

EXAMPLES

Definition of Employee class:

public class Employee

{

 private String firstName;

 private String lastName;

 private String birthDate;

 private String hireDate;

 private int employeeNumber;

 private double annualSalary;

 public Employee() { ... }

 public getFirstName() { ... }

 public getLastName() { ... }

 ...

 public setEmployeeNumber(int n) { ... }

 public setEmployeeNumber(int n) { ... }

 public print() { ... }

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 14

Edit implementation

of some Person

methods as needed

EXAMPLES

▪ Potential problems:

▪ Employee class has duplicate code from Person

▪ Code is longer and more difficult to maintain

▪ Any changes to Person methods have to be done to

Employee class too (double effort)

▪ Solution using inheritance:

▪ Extend the Person class to create Employee class

▪ Reuse the private variables without redefining them

▪ Reuse (or override) public methods of Person

(c) Prof. John Gauch, Univ. of Arkansas, 2020 15

EXAMPLES

Extend Person to define Employee class:

public class Employee extends Person

{

 private String hireDate;

 private int employeeNumber;

 private double annualSalary;

 public Employee() { ... }

 public setEmployeeNumber(int n) { ... }

 public setEmployeeNumber(int n) { ... }

 public print() { ... }

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 16

We create Employee

class by extending the

Person class

EXAMPLES

Extend Person to define Employee class:

public class Employee extends Person

{

 private String hireDate;

 private int employeeNumber;

 private double annualSalary;

 public Employee() { ... }

 public setEmployeeNumber(int n) { ... }

 public setEmployeeNumber(int n) { ... }

 public print() { ... }

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 17

We only need to

include the new fields

and methods

EXAMPLES

Extend Person to define Employee class:

public class Employee extends Person

{

 private String hireDate;

 private int employeeNumber;

 private double annualSalary;

 public Employee() { ... }

 public setEmployeeNumber(int n) { ... }

 public setEmployeeNumber(int n) { ... }

 public print() { ... }

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 18

We can create

Employee methods

that override the

Person methods

CODE DEMO

Person.java

Employee1.java

Employee2.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 19

CODE DEMO

Time2.java

MilliTime1.java

MilliTime2.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 20

SUMMARY

▪ Inheritance is an important OOP feature because it saves

development time and increases software robustness

▪ We use the keywords “extends” “super” and “protected”

when implementing inheritance in Java

▪ We add data fields and methods in the subclass to make it

more specific than the general purpose superclass

▪ We can override methods in the superclass with more

methods with the same signature in the subclass

▪ The Java class libraries use inheritance extensively (there

are dozens of classes derived from Exception)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 21

	Slide 1: Advanced OOP: inheritance
	Slide 2: OVERVIEW
	Slide 3: overview
	Slide 4: overview
	Slide 5: Advanced OOP: inheritance
	Slide 6: syntax
	Slide 7: syntax
	Slide 8: syntax
	Slide 9: Advanced OOP: inheritance
	Slide 10: examples
	Slide 11: examples
	Slide 12: examples
	Slide 13: examples
	Slide 14: examples
	Slide 15: examples
	Slide 16: examples
	Slide 17: examples
	Slide 18: examples
	Slide 19: CODE DEMO
	Slide 20: CODE DEMO
	Slide 21: summary

