ADVANCED OORP:
INHERITANCE

OVERVIEW

OVERVIEW

= What is inheritance?

= Atrait or legacy received from a parent or ancestor
= Example: money from great uncle
= Example: brown eyes from mother

= In Java inheritance is a way to build new classes

= We can derive a new class by extending an existing class

= The new class will inherit all of the fields and methods of
the existing class (without having to copy/paste)

= The derived class is called the subclass (or child)
= The existing class is called the superclass (or parent)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 2

OVERVIEW

* Inheritance can be visualized like a family tree

= Multiple child classes can be derived from same parent
= We can have multiple generations of inheritance
= We are not allowed to inherit from multiple parents

Student

Graduate Undergraduate

MS PhD Athlete Honors

(c) Prof. John Gauch, Univ. of Arkansas, 2020 3

OVERVIEW

= Why is inheritance important?

= |t saves development time and reduces code duplication
by basing new classes on existing classes
= This increase reliability by extending debugged classes

= We can also use polymorphism to process groups of
related objects more efficiently in some applications

= Lesson Overview

= Syntax for inheritance
= Examples of inheritance
= Summary

(c) Prof. John Gauch, Univ. of Arkansas, 2020 4

ADVANCED OORP:
INHERITANCE

PART 1
SYNTAX

SYNTAX

= We use the keyword extends in the subclass (child)
definition to name the superclass (parent)
= public class Employee extends Person
= public class Car extends Vehicle
= public class Truck extends Vehicle

= public class Hybrid extends Car

= |n Java multiple children are allowed to inherit from one
parent, but a child is not allowed to have multiple parents

= Multiple inheritance is allowed in some other languages
but the syntax and implementation get very ugly

(c) Prof. John Gauch, Univ. of Arkansas, 2020 6

SYNTAX

* The keyword super is used in two ways when
implementing a subclass to access the superclass

= We can call the constructor methods of the superclass
using super() or super(params)

= We can call public methods in the superclass using
super.method _name(params)

= We can not access private data fields of the superclass
directly, so we need to call superclass getters and setters

= We can not access private methods of the superclass

(c) Prof. John Gauch, Univ. of Arkansas, 2020

SYNTAX

= By default a subclass can not directly access private data
fields of the superclass

= We can change this if we have access to the implementation
of the superclass

= Use the keyword protected instead of private when defining
the data fields of the superclass
= private String firstName;
= private String lastName;
= protected String homeAddress;
= protected double GPA,;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 8

ADVANCED OORP:
INHERITANCE

PART 2
EXAMPLES

EXAMPLES

= Assume we already have a Person class and we want to
create an Employee class

= The two objects have many fields in common

Person: Employee:

First name First name

Last name Last name

Birth date Birth date
Hire date
Employee number
Annual salary

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 O

EXAMPLES

Definition of Person class:

public class Person

{
private String firstName;
private String lastName;
private String birthDate;

public Person() { ... }
public getFirstName () { ... }
public getLastName () { ... }
public print() { ... }

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 1

EXAMPLES

Definition of Employee class:

public class Employee
{

pr}vate Str}ng firstName; Copy/paste from
private String lastName; <€ he P |
private String birthDate; the Person class

private String hireDate;
private int employeeNumber;
private double annualSalary;

public Employee() { ... }

public getFirstName () { ... }

public getLastName() { ... }

public setEmployeeNumber (int n) { ... }
public setEmployeeNumber (int n) {
public print() { ... }

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 2

EXAMPLES

Definition of Employee class:

public class Employee

{
private String firstName;
private String lastName;
private String birthDate;
private String hireDate;

private int employeeNumber; Add new fields
rivate double annualSalarvy;
e Y and methods to the

public Employee() { ... } Employee class
public getFirstName () { ... }

public getLastName () { ... }

public setEmployeeNumber (int n) { ... }

public setEmployeeNumber (int n) { ... }

public print() { ... }

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 3

EXAMPLES

Definition of Employee class:

public class Employee

{
private String firstName;
private String lastName;
private String birthDate;
private String hireDate;
private int employeeNumber;
private double annualSalary;

public Employee() { ... }
public getFirstName () { ... }
public getLastName () { ... }

Edit implementation
of some Person

public setEmployeeNumber (int n) methods as needed

public setEmployeeNumber (in
public print() { ... }

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 4

EXAMPLES

= Potential problems:

= Employee class has duplicate code from Person
= Code is longer and more difficult to maintain

= Any changes to Person methods have to be done to
Employee class too (double effort)

= Solution using inheritance:

= Extend the Person class to create Employee class
= Reuse the private variables without redefining them

= Reuse (or override) public methods of Person

(c) Prof. John Gauch, Univ. of Arkansas, 2020

15

EXAMPLES

Extend Person to define Employee class:

public class Employee extends Person

{ We create Employee

private String hireDate;)
class by extending the

private int employeeNumber;

private double annualSalary; Person class
public Employee() { ... }

public setEmployeeNumber (int n) { ... }

public setEmployeeNumber (int n) { ... }

public print() { ... }

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 6

EXAMPLES

Extend Person to define Employee class:

public class Employee extends Person

{
private String hireDate; We only need to

private int employeeNumber; < include the new fields
private double annualSalary; and methods
public Employee() { ... }

public setEmployeeNumber (int n) { ... }

public setEmployeeNumber (int n) { ... }

public print() { ... }

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 7

EXAMPLES

Extend Person to define Employee class:

public class Employee extends Person
{
private String hireDate;
private int employeeNumber;
private double annualSalary;

public Employee() { ... }

public setEmployeeNumber (int n) { ... }
public setEmployeeNumber (int n) { ... }
public print() { ... }

We can create
Employee methods
that override the
Person methods

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 8

CODE DEMO

Person.java
Employee1.java
EmployeeZ2.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 1 9

CODE DEMO

Time2.java
MilliTime1.java
MilliTime2.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 20

SUMMARY

= Inheritance is an important OOP feature because it saves
development time and increases software robustness

7«

= We use the keywords “extends” “super” and “protected”
when implementing inheritance in Java

= We add data fields and methods in the subclass to make it
more specific than the general purpose superclass

= We can override methods in the superclass with more
methods with the same signature in the subclass

= The Java class libraries use inheritance extensively (there
are dozens of classes derived from Exception)

(c) Prof. John Gauch, Univ. of Arkansas, 2020

21

	Slide 1: Advanced OOP: inheritance
	Slide 2: OVERVIEW
	Slide 3: overview
	Slide 4: overview
	Slide 5: Advanced OOP: inheritance
	Slide 6: syntax
	Slide 7: syntax
	Slide 8: syntax
	Slide 9: Advanced OOP: inheritance
	Slide 10: examples
	Slide 11: examples
	Slide 12: examples
	Slide 13: examples
	Slide 14: examples
	Slide 15: examples
	Slide 16: examples
	Slide 17: examples
	Slide 18: examples
	Slide 19: CODE DEMO
	Slide 20: CODE DEMO
	Slide 21: summary

